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I. Let τ be a local convex topology on a complex algebra A with a unit and
algebraic norm. Further, suppose the multiplication is continuous with respect on
each coordinate and that identical map {A,‖ · ‖} → {A,τ} is also continuous. Let
{P} be the system defining algebraic seminorms, which generate topology τ [1].

Recall, that element a ∈ {A,τ} belongs to the class Gr({A,τ}), if there exists
an element b ∈ {A,τ} such that for every seminorm {P}:

max
{

P
(
exp(−λb) · exp(λ̄a)

)
, P
(
exp(−λ̄a) · exp(λb)

)}
= o

(
|λ |

1
2

)
(1.1)

when |λ | → ∞, λ ∈ C (see [2]).
Proposition 1.1. If element a ∈ Gr({A,τ}), then element b ∈ {A,τ} from the

definition of the class Gr({A,τ}) is unique.
Proof. Suppose there exists another element b̃ ∈ {A,τ} such that

max
{

P
(
exp(−λ b̃) · exp(λ̄a)

)
, P
(
exp(−λ̄a) · exp(λ b̃)

)}
= o

(
|λ |

1
2

)
when |λ | → ∞, λ ∈ C for every P.

Consider {A,τ} is valued entire function

f (λ ) = exp(−λb)exp(λ b̃).

Then, for each seminorm P:

P( f (λ ))=P
(
exp(−λb) · exp(λ b̃)

)
=P

(
exp(−λb)exp(λ̄a) · exp(−λ̄a)exp(λ b̃)

)
6
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6 P
(
exp(−λb)exp(λ̄a)

)
·P
(
exp(−λ̄a)exp(λ b̃)

)
= o(|λ |),

when |λ | → ∞, λ ∈ C.
Applying (1.1) and Liouville’s Theorem, we get f (λ )≡ f (0) = 1, from which

it follows exp(λb) = exp(λ b̃) and, therefore, b = b̃.
The Proposition 1.1 is proved.
Proposition 1.2. If a1,a2 ∈ Gr({A,τ}) and [a1,b2] = 0 or [a2,b1] = 0, then

[a1,a2] = 0, [b1,b2] = 0.
Proof. Indeed, since

f (λ ) = exp(−λb1)b2 exp(λb1) = exp(−λb1)exp
(
λ̄a1
)

b2 exp
(
λ̄b1
)
−

−exp(−λb1)
(
exp
(
λ̄a1
)

b2−b2 exp
(
λ̄a1
))

exp
(
−λ̄a1

)
exp
(
λ̄b1
)

and

g(λ ) = exp(−λb2)b1 exp(λb2) = exp(−λb2)exp
(
λ̄a2
)

b1 exp
(
−λ̄a2

)
exp(λb2)−

−exp(−λb2)
(
exp
(
λ̄a2
)

b1−b1 exp
(
λ̄a2
))

exp
(
−λ̄a2

)
exp
(
λ̄b2
)
,

then from (1.1) and the condition [a1,b2] = 0 or [a2,b1] = 0, we get that [b1,b2] = 0,
changing λ → µ = λ̄ gives [a1,a2] = 0.

The Proposition 1.2 is proved.
As was proved in [2], the following generalization of von Neumann’s Theorem

holds for the elements from the class Gr({A,τ}) (see [1, 3]).
T h e o r e m 1. 1. [2]. Let a ∈ Gr({A,τ}). Then, for every neighbourhood

of zero U ⊂ {A,τ}, there exists a neighbourhood of zero V ⊂ {A,τ} such, that if
x ∈A, ‖x‖6 1 and [a,x] ∈V , then [b,x] ∈U .

It is clear, that all normal and quasinormal elements belong to the class
Gr({A,τ}). For simplicity, in case of complex Banach algebra A, let give an example
of a ∈ Gr(A) for which [a,b] 6= 0.

Fix σ > 0 and α ∈ R. Denote by Bσ (α) the Banach algebra of all entire
functions f of the exponential type 6 σ , for which

‖ f‖ := sup
R

=
| f (λ )|

(1+ |λ |)α
< ∞. (1.2)

If α = 0, then Bσ (α) will be the classical Bernshtein space. If α 6 β , then
Bσ (α)⊂ Bσ (β ) [3]. Using Fragmente-Lindelof Theorem, we get

| f (λ )|6C f (1+ |λ |)αeσ |Imλ |. (1.3)

From Cauchy’s Theorem and inequalities (1.2) and (1.3) it follows that the

operator δ =
1
i
· d

dλ
is acting continuously in space Bσ (α) and

‖exp(itδ )‖ ∼ (1+ |t|)|α|, t→±∞.

Consider the algebra B= M2(BL(Bσ (α))). With operator δ ∈ BL(Bσ (α)) and
elements a,b ∈B, defined as follows:

a =

(
δ (1+ i) , δ (1+ i)

0 , δ (1+ i)

)
, b =

(
δ (1− i) , 0
δ (1− i) , δ (1− i)

)
.
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Then, it is easy to see that

[a,b] = 2δ
2
(

1 , 0
0 , −1

)
6= 0 .

Consider exp(−λb) · exp(λ̄a). We have

exp(−λb) · exp(λ̄a) =

[
eδ(λ̄ (1+i)−λ (1−i)), eδ(λ̄ (1+i)−λ (1−i))

eδ(λ̄ (1+i)−λ (1−i)), e2δ(λ̄ (1+i)−λ (1−i))

]
,

similarly,

exp(−λa) · exp(λ̄b) =

[
e2δ(λ (1−i)−λ̄ (1+i)), eδ(λ (1−i)−λ̄ (1+i))

eδ(λ (1−i)−λ̄ (1+i)), eδ(λ (1−i)−λ̄ (1+i))

]
.

Let λ = s+ it ∈ C, then λ (1− i)− λ̄ (1+ i) = 2i(t− s) and λ̄ (1+ i)−λ (1− i) =
= 2i(s− t). Therefore,

‖exp(−λb) · exp(λ̄a)‖=
∥∥∥∥[ e2i(s−t)δ , e2i(s−t)δ

e2i(s−t)δ , e4i(s−t)δ

]∥∥∥∥∼ (1+ |λ |)4|α| ,

similarly,
‖exp(−λ̄a) · exp(λb)‖ ∼ (1+ |λ |)4|α| .

We will get the desired example, if we take α ∈ R such that |α| < 1
8

. For
operator algebras the following theorem holds:

T h e o r e m 1.2. Let X and Y are complex Banach algebras, A∈Gr(BL(X)),
B ∈ Gr(BL(Y )). Then for every ε > 0 there exists δ > 0, such that if T ∈ BL(X ,Y ),
‖T‖6 R and ‖AT −T B‖< δ , then ‖A⊕T −T B⊕‖< ε .

Note, that operators A⊕ ∈ BL(X) and B⊕ ∈ BL(Y ) are conjugates of operators
A ∈ BL(X) and B ∈ BL(Y ) in the sense of class Gr(·) defined by (1.1).

The Theorem 1.2 is proved by the same scheme as the Theorem 1 from [2].
Consider the operator-valued entire function

F(λ ) = exp(−λA⊕)T exp(λB⊕) = exp(−λA⊕)exp(λ̄A)T exp(−λ̄B)exp(λB⊕))−
− exp(−λA⊕)(exp(λ̄A)T −T exp(λ̄B))exp(−λ̄B)exp(λB⊕).

By Cauchy’s integral formula

‖F ′(0)‖6 o(r)
r

+ηe4r.

From here and the condition ‖AT −T B‖< δ it follows that

‖A⊕T −T B⊕‖< ε.

The Theorem is proved.
The Theorem 1.2 has analogues corresponding to standard operators topolo-

gies, which satisfy the conditions of topology τ . Note, that by the definition of the
class SGr(A) in [4], the element b ∈B from the definition of SGr(A) is unique as it
is in Proposition 1.1
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II. Let A be a complex Banach algebra with the unit 1, and let â= (ak)
∞

k=0⊂A

be a sequence of elements such that

lim
k→∞

k
√
‖ak‖= ρ(â)< ∞. (2.1)

From (2.1) it follows that A-valued function

E(z) =
∞

∑
k=0

ak

k!
zk

is an entire A-valued function of exponential type ρ(â). The number ρ(â) is called
generalized spectral radius of the sequence (â), which is the radius of the smallest
circle centered at the origin and outside of which the following A-valued power series
converge

e(λ ) =
∞

∑
k=0

ak

λ k+1 .

For A-valued function E(z) the convex hull of the set of singularities is called
conjugate diagram of the function E(z), which we denote by D(â). Actually this
set is the smallest convex set, which contains all singularities of A-valued function
e(λ ) [4].

Recall (see [4–6]), that a functional ϕ ∈ A∗ is called to be a state, if
‖ϕ‖= ϕ(1) = 1. The set St(A) of all states is a σ(A∗,A) compact convex subset of
the conjugate space A∗. In contrast to the set of complex homomorphisms, which can
be empty in case of non-commutative algebras, the set of states is always non-empty.
Recall, that for each element a ∈ A the set V (a) = {ϕ(a) : ϕ ∈ St(A)} is called
(algebraic) numerical image of element a ∈ A. Not hard to see that for each a ∈ A,
sp(a) ⊂ V (a), where sp(a) is a spectrum of the element a. Using Han-Banach’s
Theorem, it can be proved that A-valued function E(z) and e(λ ) are related with
integral representation:

E(z) =
1

2πi

∫
γ

e(λ )eλ zdλ ,

where γ is a closed contour containing D(â). If K(θ) is the support function of the
set D(â) [7], then ∥∥∥E

(
reiθ
)∥∥∥6 L(ε)e[K(−θ)+ε]r

for every ε > 0, where L(ε) =
L

2π
max

λ∈Dε (â)
‖e(λ )‖. Here L is the length of the contour

γ , and Dε(â) ) is the ε-extension of D(â). For the ray `(θ0) = {z ∈ C : arg(z) = θ0}
the integral given by the formula

e(λ ) =
∞eiθ0∫
0

E(z)e−λ zdz (2.2)

is an analytic A-valued function in the half plane Re
(
λe−iθ0

)
> ρ(â)+ δ , where

δ > 0. Consider the indicator of growth h(θ) for the A-valued function E(z) (i.e.
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h(θ) = lim
r→∞

ln‖E(reiθ )‖
r

, 0 6 θ 6 2π). Thus, the function e(λ ) is an A-valued

analytic function in the half-plane Re
(
λeiθ0

)
> h(θ0), for which the representation

(2.2) holds, and, therefore, the A-valued analogue of Polya’s Theorem is hold too,
h(θ) = K(−θ).

Consider an important case when ak = ak, where a ∈ A. In this case E(z) =
= exp(za) and e(λ ) = (λ1− a)−1, ρ(â) = ρ(a), where ρ(a) is the spectral radius
of the element a ∈ A and D(â) = 〈sp(a)〉. Here 〈sp(a)〉 is the convex hull of the
spectrum of the element a ∈A.

It is well known (see [8]), that
max{Reλ : λ ∈ sp(a)}= lim

r→∞

ln‖exp(ra)‖
r

,

max{Reλ : λ ∈V (a)}= lim
t→+0

ln‖exp(ta)‖
t

.

(2.3)

Let 0 6 θ 6 2π . Since sp
(
ae−Iθ

)
= e−iθ sp(a), assuming that µ = λe−iθ ,

where λ ∈ sp(a), we get

max
{

Reµ : µ ∈ sp
(

ae−iθ
)}

= max
{

Reµ : µ ∈ e−iθ sp(a)
}
=

= max
{

Re
(

λe−iθ
)

: λ ∈ sp(a)
}
= K〈sp(a)〉(θ).

Similarly, since V
(
e−iθ a

)
= e−iθV (a), then

max
{

Reµ : µ ∈V
(

e−iθ a
)}

= max
{

Reµ : µ ∈ e−iθV (a)
}
=

= max
{

Re
(

λe−iθ
)

: λ ∈V (a)
}
= KV (a)(θ).

Using the first formula from (2.3), we get

K〈sp(a)〉(θ) = lim
r→∞

ln‖exp(re−iθ a)‖
r

= lnρ

(
exp
(

e−iθ a
))

.

Since 〈sp(a)〉 ⊂V (a), then for every θ ∈ [0,2π], K〈sp(a)〉(θ)6 KV (a)(θ).
Now consider conditions of “covnexity” of the element a ∈ A, i.e. when

〈sp(a)〉=V (a).
Note, that all normal and subnormal elements are “convexoids”.
Thus, if we want element a ∈A be a “convexoid”, we need to hold the condi-

tion K〈sp(a)〉(θ)> KV (a)(θ) for each θ ∈ [0,2π].
Proposition 2.1. If element a ∈A is such that

min
06θ62π

{
lnρ

(
exp
(

e−iθ a
))
− lim

t→+0

∥∥1+ te−iθ a
∥∥−1

t

}
> 0 , (2.4)

then 〈sp(a)〉=V (a).
Proof. Since

K〈sp(a)〉(θ)−KV (a)(θ) = lnρ

(
exp
(

e−iθ a
))
− lim

t→+0

ln
∥∥exp

(
te−iθ a

)∥∥
t

then taking into consideration that
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lim
t→+0

ln
∥∥exp

(
te−iθ a

)∥∥
t

= lim
t→+0

∥∥1+ te−iθ a
∥∥−1

t

and K〈sp(a)〉(θ) > KV (a)(θ) for every θ ∈ [0;2π], we get 〈sp(a)〉 = V (a). Note, that

if t =
1
n

, the condition (2.4) can be written as

min
06θ62π

{
lnρ

(
exp
(

e−iθ a
))
− lim

n→∞
ln
∥∥∥∥ n
√

exp(e−iθ a)
∥∥∥∥n}

> 0.

The Proposition is proved.

Let a ∈ Gr(A) and θ ∈ [0;2π]. Then by virtue of the definition class Gr(A),
on the ray `(θ) =

{
λ = te−iθ ∈ C : arg(λ ) = θ

}
, we have

K〈sp(a)〉(θ) = lim
t→∞

ln
∥∥exp

(
te−iθ a

)∥∥
t

=

= lim
t→+∞

ln
∥∥exp

(
teiθ b

)
· exp

(
−teiθ b

)
· exp

(
te−iθ a

)∥∥
t

6

6 lim
t→+∞

[
ln
∥∥exp

(
teiθ b

)∥∥
t

+
ln
∥∥exp

(
−teiθ b

)
exp
(
te−iθ a

)∥∥
t

]
=

= lim
t→+∞

 ln
∥∥exp

(
teiθ b

)∥∥
t

+
lno
(

t
1
2

)
t

=

= lnρ

(
exp
(

eiθ b
))

= K〈sp(b)〉(−θ) .

Similar reasoning shows that

K〈sp(b)〉(−θ) = lnρ

(
exp
(

eiθ b
))

6 lnρ

(
exp
(

e−iθ a
))

= K〈sp(a)〉(θ) .

Thus, for every θ ∈ [0;2π]

K〈sp(a)〉(θ) = K〈sp(b)〉(−θ) . (2.5)

Taking into consideration (2.5), we get

K〈sp(b)〉(θ) = K〈sp(a)〉(−θ) = K〈sp(a)〉(θ).

Therefore, 〈sp(a)〉 = 〈sp(b)〉 and ρ(a) = ρ(b). From (2.5) we get that for
the indicators of growth 〈sp(a)〉 and 〈sp(b)〉, h〈sp(b)〉(θ) = K〈sp(a)〉(−θ) by Polya’s
Theorem. Therefore, h〈sp(b)〉(θ) = h〈sp(a)〉(−θ).
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